Disiplin ilmu dan Teknik-teknik Data Mining
Data mining dalam penerapannya menggabungkan berbagai bidang ilmu, diantarnya: Sistem basis data, statistik, sistem cerdas, pembelajaran mesin, pengenalan pola, dan visualisasi.
Bidang sistem baisd data merupakan prasayarat utama data mining. Hali ini disebakan karena pada umumnya data mining dikembangkanan untuk sistem basis data skala besar. Data Warehousing yang merupakan data pre-procesing banyak diterapakan melalui penggunaan SQL dan store procedure yang kemudian menjadi semacam fungsi yang disebut Data Mining Query Language (DMQL), sebagai contoh pada produk SQL Server dan Oracle. Statistik deskriptif, pengujian hipotesa, regresi liner, regresi non linier, poin estimasi, korelasi, dan analisis klaster merupakan perhitungan/teknik analisis statistic sangat dibutuhkan baik dalam preprocessing maupun proses data mining. Pembelajaran mesin, pengenalan pola, jaringan syaraf tiruan, algoritma genetika, logika samar merupakan teknik-teknik sistem cerdas yang utama dalam analisis data mining selain metode statistik